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Abstract

When random variables are used to represent variability, the risk equation has

mathematical properties poorly understood by many risk assessors. Variability

represents the heterogeneity in a well-characterized population, usually not

reducible through further measurement or study. We follow the lead of most

mathematicians in using random variables to represent and analyze variability.

To illustrate the issues, we use LogNormal distributions to model variability.

1.0 Introduction

When estimating the incremental lifetime cancer risk, R, from an environmental

exposure to a single carcinogenic chemical via a single exposure pathway, risk

assessors often use equations of this fundamental form:
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Eqn 1

where ∏ indicates a product over the index. In common practice, risk assessors

use point values (i.e., real numbers) for each variable in Eqn 1. Burmaster and

Thompson (1995a, b) have discussed the origins and interpretation of Eqn 1 in

deterministic risk assessments.

Most risk assessors now agree that all the variables in Eqn 1 contain both

(i) variability and/or (ii) uncertainty. In this discussion, variability represents the

heterogeneity in a well-characterized population [and is usually not reducible

through further measurement or study] while uncertainty represents our
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ignorance about a poorly-characterized phenomenon or models [and may be

reducible through further measurement or study]. Thus, variability is a property of

the natural system under analyst, while uncertainty is a property of the analyst.

Here, we focus exclusively on variability -- not because uncertainty is

unimportant, but because the introduction of variability alone illustrates the main

mathematical points of this discussion.

In the probabilistic paradigm, Eqn 1 remains the fundamental equation of risk

assessment (Burmaster & Thompson, 1995a, b). However, in the fully

probabilistic framework, each of the variables in Eqn 1 is a positive random

variable represented by a probability density function (PDF) or a cumulative

distribution function (CDF) (see, e.g., Feller, 1968 & 1971). To emphasize this

change in perspective, we re-write Eqn 1 as Eqn 2, with doubly underscored

symbols to denote that each variable is now a random variable that expresses

variability in a quantity. We also create Eqns 3 and 4, each an alternative and

equivalent representation of Eqn 2:
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Eqn 2

R = f(Xi, Yj) for i = 1, ..., I and j = 1, ..., J Eqn 3

R =
 g(Xi) 
 h(Yj) 

for i = 1, ..., I and j = 1, ..., J Eqn 4

In Eqn 4, we use the notation g(Xi) for the product of random variables in the

numerator and the notation h(Yj) for the product of random variables in the

denominator so we can refer to the numerator and denominator separately as

needed. We will continue to denote real variables (point values) without the
double underscores. With knowledge of the distributions of all the Xi and Yj, an

analyst can calculate a closed form expression for the distribution R in a handful

of special cases with independent variables (Springer, 1979). In most practical

cases, including those cases with correlated or jointly distributed random

variables on the right hand side of the risk equation, the analyst can simulate a
numerical approximation to the distribution R (Rubenstein, 1981; Morgan, 1984).
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2.0 Background on Two-Parameter LogNormal Distributions

LogNormal distributions with two constant parameters play a central role in

expressing variability in human and ecological risk assessment for at least three

reasons. First, many physical, chemical, biological, and statistical processes tend

to create random variables that follow two-parameter LogNormal distributions for

expressing variability (Hattis & Burmaster, 1994). For example, the physical

mixing and dilution of one material (say, a miscible or soluble contaminant) into

another material (say, surface water in a bay) tends to create non equilibrium

concentrations which are LogNormal in character (Ott, 1990; Ott, 1995). Second,

when the conditions of the Central Limit Theorem hold, the mathematical process

of multiplying a series of random variables will produce a new random variable

(the product) which, in the limit, is LogNormal in character, regardless of the

distributions from which the input variables arise (Benjamin & Cornell, 1970).

Finally, two-parameter LogNormal distributions are self-replicating under

multiplication and division, i.e., products and quotients of such LogNormal

random variables are themselves distributed lognormally (Aitchison & Brown,

1957; Crow & Shimizu, 1988). All these points apply to Eqns 2, 3, and 4.

The two-parameter LogNormal distribution expressing variability takes its name

from the fundamental property that the logarithm of the random variable is

distributed according to a Normal or Gaussian distribution (Evans et al, 1993):

ln[X] ~ N(µ, σ) Eqn 5

where ln[•] denotes the natural or Napierian logarithm function (base e) and

N(•, •) denotes a Normal or Gaussian distribution with two constant parameters,
the mean µ and the standard deviation σ (with σ > 0). In Eqn 5, X is a two-

parameter LogNormal random variable, and ln[X] is a Normal random variable. In

Eqn 5, µ is the mean and σ is the standard deviation of the distribution for the
Normal random variable ln[X], not the LogNormal random variable X. Many

people say that Eqn 1 represents the LogNormal random variable X "in

logarithmic space." As can be seen in Eqn 5, the random variable ln[X] is

distributed normally, but the random variable X is distributed lognormally.
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The information coded in Eqn 5 is identical to the information coded in Eqn 6:

X ~ exp[ N(µ, σ) ] Eqn 6

where exp[•] denotes the exponential function and N(•, •) again denotes the same
Normal or Gaussian distribution with the same two constant parameters, mean µ
and standard deviation σ (with σ > 0) as above. In Eqn 6, X is a two-parameter

LogNormal random variable. As earlier, µ is the mean and σ is the standard
deviation of the Normal random variable ln[X], not the LogNormal random

variable X. Many people say that Eqn 6 represents the LogNormal random

variable X "in linear space." When working with Eqn 6 as the representation for a

LogNormal random variable X, many people refer to N(µ, σ) as the "underlying

Normal distribution" or "the Normal distribution in logarithmic space" as a way to

remember its origins.

3.0 The Fundamental Risk Equation With All LogNormal Random Variables

3.1 The General Case

If all the inputs to the fundamental risk equation, Eqn 2, are independent

LogNormal random variables of the form:

Xi ~ exp[ N(µi, σi) ] for i = 1, ... , I Eqn 7

Yj ~ exp[ N(µj, σj) ] for j = 1, ... , J Eqn 8

then the distribution of risk is also a LogNormal random variable of the form:

R ~ exp[ N(µR, σR) ] Eqn 9

with

µR = ∑ µi - ∑ µj  Eqn 10

 σR = Sqrt [ ∑ σ2i + ∑ σ2j ] Eqn 11
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with the sums over all the indicated indices. As discussed earlier, LogNormal

distributions are self-replicating under multiplication and division.

3.2 Working with "High-End" and "Low-End" Values

In 1992, the US Environmental Protection Agency (US EPA) defined the concept

of a "high-end" point value for a variable in the numerator of Eqn 2 as a

deterministic input to an exposure assessment that falls above the 90th percentile

but below the 99.9th percentile of the distribution for the particular random

variable (US EPA, 1992). For a variable in the denominator of Eqn 2, one may

define a corresponding "low-end" value as falling below the 10th percentile but

not below the 0.1th percentile for the particular random variable.

For simplicity of exposition, let us take the 95th percentile as representing a high-

end value and the 5th percentile as representing a low-end value of a distribution.
Let the notations {T}0.95 and {T}0.05 and indicate the 95th and 5th percentiles,

respectively, of an arbitrary random variable T.

With this notation, when the standard deviations are roughly similar, the high-end

value of the numerator of Eqn 4 is considerably smaller than the function of the

high-end inputs:

{g(Xi)}0.95  < g({Xi}0.95)  for i = 1, ... , I Eqn 12

Similarly, when the standard deviations are roughly similar, the low-end value of

the denominator of Eqn 4 is considerably larger than the function of the low-end

inputs:

{h(Yj)}0.05  > h({Yj}0.05)  for j = 1,... , J Eqn 13

Overall, this means that the high-end value for risk is much, much smaller than

the function of the high-end inputs in the numerator and the low-end inputs in the

denominator when the standard deviations are roughly similar:
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{R}0.95 << f({Xi}0.95, {Yj}0.05) Eqn 14

for i = 1, ..., I and j = 1, ..., J

Most risk assessors now understand this well-documented property of the

fundamental risk equation, Eqn 2 (Burmaster & Harris, 1993; Bogen, 1994;

Cullen, 1994). This property of the fundamental risk equation does not depend on

the use of LogNormal distributions as inputs.

3.2 Working with Arithmetic Means

Let the notation <T> indicate the arithmetic mean (or expected value) of an

arbitrary random variable T. For a LogNormal distribution, the arithmetic mean is

always greater than the median of the distribution by the factor exp[ 0.5 • σ2T ]. In

many practical cases, the arithmetic mean of a LogNormal random variable falls

between the 65th and the 80th percentiles of the distribution. However, in certain

situations, the arithmetic mean of a LogNormal distribution can exceed the 95th

percentile of that distribution.

Some mathematical properties hold in this situation. For independent LogNormal

distributions, the arithmetic average of the numerator in Eqn 4 equals the function

of the arithmetic averages of the input variables:

<g(Xi)> = g(<Xi>)  for i = 1, ... , I Eqn 15

Similarly, for independent LogNormal distributions, the arithmetic average of the

denominator in Eqn 4 equals the function of the arithmetic averages of the input

variables:

<h(Yj)>  = h(<Yj>)  for j = 1,... , J Eqn 16

The results in Eqns 15 and 16 are easy to prove for independent LogNormal

distributions, and the results hold generally for other independent random

variables from other families of distributions. Some authors use this property as

the definition of independence between two random variables.
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However, for independent LogNormal distributions, the arithmetic average of risk

does not equal the function of the averages of the inputs:

<R> ≠ f(<Xi>, <Yj>) Eqn 17

for i = 1, ..., I and j = 1, ..., J

This result in Eqn 17 surprises many people, even though it is easily proved for

independent LogNormal distributions. It is true for other families of distributions

as well.

3.3 Working with Medians

Let the notation {T}0.50 indicate the median or 50th percentile of an arbitrary

random variable T.

Some mathematical properties hold in this situation. For LogNormal distributions,

the median of the numerator in Eqn 4 equals the function of the medians of the

input variables:

{g(Xi)}0.50  = g({Xi}0.50)  for i = 1, ... , I Eqn 18

and, the median of the denominator in Eqn 4 equals the function of the medians

of the input variables:

{h(Yj)}0.50 = h({Yj}0.50)  for j = 1, ... , J Eqn 19

More generally for independent LogNormal distributions, the median risk equals

the function of the median inputs to Eqn 3:

{R}0.50 = f({Xi}0.50, {Yj}0.50) Eqn 20

for i = 1, ..., I and j = 1, ..., J

Thus, for independent LogNormal distributions, the median of the function for risk

(in Eqns 2, 3, and 4) is the function of the median inputs. Although this result is
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not true for independent random variables from other families of distributions, we

have found it an excellent approximation in many numerical simulations of Eqns

2, 3, and 4.

3.4 Working with Mixed Cases

If we continue to restrict ourselves to independent LogNormal random variables

as the inputs to the fundamental risk equation, any of Eqns 2, 3, or 4, then:

• the median of the R is equal to the function of the medians of the inputs;

• the arithmetic mean of R is NOT equal to the function of the arithmetic

means of the inputs; and

• the 95th percentile of R is much smaller than the function of (i) the 95th

percentiles of all the inputs in the numerator and (ii) the 5th percentiles of

all the inputs in the denominator.

Thus, as is exactly true for independent LogNormal distributions and as is

approximately true for other independent random variables with longer tails to the

right, medians (not averages) are "neutral" and "self replicating" when used as

point value inputs to the fundamental risk equation, Eqn 2.

Without doing a full calculation or a full simulation, no one can know the
percentile of R calculated if the inputs to the fundamental risk equation, Eqn 2,

include a combination of median values, average values, and high- and low-end

values.

Restricting ourselves to the case with independent LogNormal distributions, we

see that:

• the use of one or more median values in either the numerator or the

denominator does not shift the estimate of R (further) above or (further)
below the correct median of R, i.e., median inputs are "neutral" in trying to

understand where the value R falls as a percentile of the distribution R;



7 September 95 9 Alceon

• the use of one or more average values in the numerator does shift the
estimate of R above the correct median of R, i.e., average inputs in the

numerator introduce moderate to large (but unknown) amounts of

conservatism in trying to understand where the value R falls as a
percentile of the distribution R;

• the use of one or more high-end values in the numerator does shift the
estimate of R far above the correct median of R, i.e., high-end inputs in the

numerator introduce large (but unknown) amounts of conservatism in

trying to understand where the value R falls as a percentile of the
distribution R; and

• the use of one or more low-end values in the denominator does shift the
estimate of R far above the correct median of R, i.e., low-end inputs in the

denominator also introduce large (but unknown) amounts of conservatism

in trying to understand where the value R falls as a percentile of the
distribution R.

Most risk assessors now understand that the introduction of a few high-end

values into the numerator or a few low-end values into the denominator of Eqns 1

or 2 can introduce very large amounts of conservatism into the point estimate R

(Harris & Burmaster, 1992; Burmaster & Harris, 1993; Bogen, 1994; Cullen,

1994).

Fewer people understand that the introduction of several average values in the

numerator of Eqns 1 or 2 can introduce significant amounts -- or even very large

amounts -- of conservatism into point estimate R. As an extreme example, if the

arithmetic means of three distributions all exceed the 90th percentile of the

corresponding distribution, the result is obvious. Less obvious, the use of three

average values as point values for the corresponding LogNormal random

variables can really be the multiplication of three 75th percentiles. If these are the

only conservative inputs in an equation, these three inputs may multiply to give,

in effect, a high-end point value for risk. If these three average values for inputs

in the numerator are combined multiplicatively with three high-end values for

other inputs in the numerator, the resulting point estimate of risk may be far, far
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more conservative than understood just from the combination of the three high-

end values along with medians for the other variables.

4.0 Conclusions

From this discussion, we draw three main conclusions.

First, without doing a full calculation or a full simulation, no one can know the
percentile of R calculated if the inputs to the fundamental risk equation, Eqn 2,

include a combination of median values, average values, and "high end" values.

Second, for independent LogNormal random variables -- and for other

independent random variables from other families of distributions with long tails

to the right -- the use of one or more medians in the numerator or denominator of

Eqns 2, 3, or 4 for input variables does not introduce any compounding

conservatisms; in contrast, the use of one or more average values in the

numerator of those same equations always introduces multiplicative

conservatisms, usually hidden from view and sometimes numerically large.

Third, the simultaneous use of several average values in the numerator (for

distributions with long tails to the right) along with several high-end values in the

numerator and several low-end values in the denominator can lead to point

estimates of risk that fall above the range US EPA uses to set policy.
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