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Abstract

Variability arises due to differences in the value of a quantity among different members of a

population.  Uncertainty arises due to lack of knowledge regarding the true value of a quantity for a

given member of a population.  We describe and evaluate two methods for quantifying both

variability and uncertainty.  These methods, bootstrap simulation and a likelihood-based method,

are applied to three data sets.  The data sets include a synthetic sample of 19 values from a

Lognormal distribution, a sample of 9 values obtained from measurements of the PCB

concentration in leafy produce, and a sample of 5 values for the partitioning of chromium in the

flue gas desulfurization system of coal-fired power plants.  For each of these data sets, we employ

the two methods to characterize uncertainty in the arithmetic mean and standard deviation,

cumulative distribution functions based upon fitted parametric distributions, the 95th percentile of

variability, and the 63rd percentile of uncertainty for the 81st percentile of variability.  The latter is

intended to show that it is possible to describe any point within the uncertain frequency distribution

by specifying an uncertainty percentile and a variability percentile.  Using the bootstrap method.

we compare results based upon use of the method of matching moments and the method of

maximum likelihood for fitting distributions to data.  Our results indicate that with only 5 to 19 data

points as in the data sets we have evaluated, there is substantial uncertainty based upon random

sampling error.  Both the boostrap and likelihood-based approaches yield comparable uncertainty

estimates in most cases.

Key Words:  Variability, Uncertainty, Maximum Likelihood, Bootstrap Simulation, Monte Carlo

Simulation
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1 .0 Introduction

The purpose of this paper is to: (1) explore the strengths and limitations of two methods for

characterizing variability and uncertainty; and (2) to explore the mathematical properties of selected

second-order random variables based upon analyses of example data sets.  The methods we

consider for characterizing both variability and uncertainty are bootstrap simulation and an

extension of maximum likelihood estimation.  We apply both of these methods to each of three data

sets.  These data sets are characterized by small sample sizes (5, 9, and 19).  We assume that these

data are random representative samples.  We demonstrate that  there can be substantial amounts of

quantifiable uncertainty that can be attributed to the small sizes of our data sets.  Thus, in some

cases, uncertainty due to statistical random fluctuation may be substantially larger than other

sources of uncertainty, such as measurement errors.

    Variability     represents diversity or heterogeneity in a well characterized population. Fundamentally a

    property of Nature   , variability is usually not reducible through further measurement or study. For

example, different people have different body weights, no matter how carefully we measure them.

     Uncertainty     represents partial ignorance or lack of perfect information about poorly-characterized

phenomena or models. Fundamentally a     property of the risk analyst   , uncertainty is sometimes

reducible through further measurement or study. For example, even though a risk assessor may

not know the body weights of every person now living in San Francisco, he or she can certainly

take more samples to gain additional (but still imperfect) information about the distribution.

In a probabilistic assessment, an assessor may use what we term to be a “second-order” probability

distribution (a second-order random variable or "2RV") to represent the variability and the

uncertainty in one or more of the model inputs (Bogen and Spear, 1987; Frey, 1992, Hoffman and
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Hammonds, 1994, MacIntosh et al., 1994; McKone, 1994; Frey and Rhodes, 1996; Hattis and

Barlow, 1996; Price et al., 1996). Mathematical representations of both variability and uncertainty

may also be conceptualized as uncertain frequency distributions.  The development of input

assumptions for second-order random variables may be based upon expert judgment and/or the

analysis of data.  For example, expert judgment has been employed in a variety of analyses (e.g,

Hoffman and Hammonds, 1994; NCRP, 1996; Barry, 1996; Cohen et al., 1996).  Statistical

techniques based upon the analysis of data which have been applied to second-order random

variables include the bootstrap method (e.g., Frey and Rhodes, 1996) and maximum likelihood

(MLE) methods (Burmaster and Thompson, 1998).  After the inputs to a model have been

specified as second order random variables, a variety of methods may be used to propagate both

variability and uncertainty through the model to estimate both variability and uncertainty in the

output.  These methods include mathematical approaches (e.g., Bogen and Spear, 1987), “two-

dimensional” Monte Carlo-based simulations (e.g., Frey, 1992; Hoffman and Hammonds, 1994;

and others), and approximation methods based upon discretization of input distributions (e.g.,

Bogen, 1995) or the propagation of moments using Taylor series expansions (Rai et al., 1996).

In this paper, our focus is on the comparison of two methods for quantifying both variability and

uncertainty when representative, random data are available.  The methods we compare are based

upon bootstrap simulation and maximum likelihood estimation.  The purpose of the comparison is

to identify the strengths and limitations of each method, and to illustrate how the estimates of

variability and uncertainty may differ, if at all, depending upon which method is used.  To enable

such comparisons and insights, we apply both methods to three data sets.

In Section 2 we briefly describe each of the three data sets used as examples in this paper.  We then

provide an overview of the two analysis methods, and of the propagation of variability and
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uncertainty through a model, in Section 3.  In Sections 4, 5, and 6 we apply bootstrap simulation

and likelihood estimation to the three data sets.

2 .0 Data Sets

We consider three data sets. The first data set is synthetic.  The second and third data sets come

from laboratory or field measurements.

Data Set 1 (DS1 in Table 1), a synthetic data set, contains 19 positive values drawn randomly from

a Lognormal distribution of the form exp[Normal(µ, σ)] with µ = 2 and σ = 1 and then rounded to

the nearest integer. The arithmetic mean of the parent distribution equals exp[µ + 0.5 σ 2] = 12.2,

approximately, and the arithmetic mean of this sample equals 14, exactly. When tested by the

Wilk-Shapiro (W-S) test for Normality (Madansky, 1988), the natural logarithms of these 19 data

points pass (p-value = 0.15).

Data Set 2 (DS2 in Table 1) contains 9 positive measured values of the concentration of PCBs

(ng/g, wet basis) in leafy produce produced in backyard gardens and small farms in the vicinity of

New Bedford harbor and consumed by local residents (Cullen et al., 1996).  The data set has a

mean of 0.22 ng/g and a standard deviation of 0.094 ng/g.  More than a dozen farms and gardens

producing vegetables and fruit for local consumption are located within a few miles of the

contaminated harbor.  Samples of this food were collected by purchase at roadside stands, on the

premises of the farms or gardens where they were grown, during two growing seasons (1992 and

1994). The samples were analyzed for PCBs in a laboratory at the Harvard School of Public

Health.  While there are 209 individual PCB congeners, the measured PCBs concentrations include

the sum of 59 of the most prevalent of these congeners.
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Data Set 3 (DS3a in Table 1) contains 5 positive values of the partitioning factor for chromium in

wet limestone flue gas desulfurzation (FGD) systems for coal-fired power plants.  These data were

used in a U.S. Environmental Protection Agency study of health risks associated with hazardous

air pollutant emissions from electric utility power plants (EPA, 1996).  The data were developed

based upon measurements of the concentration of chromium in the flue gas entering and exiting the

FGD systems of five coal-fired plants.  The partitioning factor is based upon the outlet flow rate of

chromium divided by the total flow rate of chromium entering the FGD system.  Thus, the

partitioning factors must be between 0 and 1.  At each plant, data were collected over a period of

typically three days and averaged.  The daily values are not reported.  Only the data representing

three-day averages were available.  The data set has an average of 0.424 and a standard deviation

of 0.372, and all values are between 0 and 1.

3 .0 Overview of Methods

In this section, we provide brief overviews of the use of bootstrap simulation and maximum

likelihood-based approaches to quantify uncertainty in the frequency distributions for variability in

a data set.

3 . 1 Overview of Bootstrap Simulation

Bootstrap simulation was introduced by Efron in 1979 for the purpose of estimating confidence

intervals for a statistic using numerical methods.  A key advantage of bootstrap simulation is that it

can provide estimates of confidence intervals in situations for which analytical mathematical

solutions may not exist.  Assume that we have a data set with n data points.  As defined by Efron

and Tibshirani (1993), bootstrap simulation is based upon drawing multiple random samples, each

of size n, with replacement, from an empirical distribution F.  This approach is referred to here as

resampling.  Each random sample of size n is referred to as a bootstrap sample.  The empirical

distribution is described by an actual data set.  If the original data set is:
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  x = x1, x2, ..., xn (1)

then probability of sampling any discrete value within the data set is 1/n.  A random sample of size

n from the original data set is denoted by:

x* = (x1*, x2*, ..., xn*)  (2)

The asterisks indicate that x* is not the actual data set x, but rather a randomized or resampled

version of it.  The resampled data describe an empirical distribution,

  

F → x1
*, x2

*, ..., xn
*

(3)

Since the sampling is done with replacement, it is possible to have repeated values within any

given bootstrap sample.

For each bootstrap sample, a bootstrap replication of a statistic may be calculated:

   

θ* = s(x*) (4)

where s(x*) is a statistical estimator applied to a bootstrap replication of the original data set.  The

statistic may be, for example, the mean, standard deviation, or 95th percentile.  To estimate the

uncertainty in the statistic, B bootstrap samples may be simulated to yield B estimates (replicates)

of the statistic.

   

θb
* = s(x*b), where b = 1, 2, ..., B (5)
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The B estimates of the statistic may be used to construct a sampling distribution for the statistic.

For example, one can estimate the mean, standard deviation (standard error), 95 percent confidence

interval, or skewness of the sampling distribution for the mean.

An alternative to resampling is parametric bootstrap, in which F is estimated using a parametric

rather than an empirical distribution.  There are variants of bootstrap known as the bootstrap-t and

the bootstrap-p approaches.  The bootstrap-t approach is a numerical method that generalizes the

Student’s t method.  This approach requires use of a standard error estimator for each statistic in

order to construct a distribution for the t-ratio of the statistic.  The bootstrap-p approach uses the

simulated bootstrap replications of statistics directly to construct a sampling distribution for the

statistic.  The bootstrap-t approach can provide greater “coverage” (wider sampling distributions)

than the bootstrap-p method, especially for small data sample sizes, but it is more complicated to

use due to the need for a priori knowledge regarding how to calculate the standard error.  The

bootstrap-p approach is easier to use and requires fewer assumptions.  Specifically, it is not

necessary to use estimators for the sampling error of each statistic, which may be unknown or only

approximately known.  Efron and Tibshirani (1993) discuss both methods in more detail.  We

employ the bootstrap-p method in this paper.

The number of bootstrap replications required depends upon the information desired.  For

example, to calculate the standard error of a statistic, Efron and Tibshirini (1993) suggest that B =

200 or less is often sufficient.  However, to estimate confidence intervals,  B = 1,000 or more may

be required.  In this paper, we typically use B=1,000 or B=2,000.

3 . 2 Overview of the MLE Approach

Sir Ronald A. Fisher developed the method of maximum likelihood estimation (MLE) as a

powerful, general purpose method for fitting a parametric distribution to data. The general idea is
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to choose an estimator for the parameter(s) in a distribution so as to maximize a function of the

sample observations (i.e., data) (paraphrased from Keeping, 1995). Details of the formulation of

likelihood functions are given in later sections.  Fisher later generalized the idea to develop joint

confidence regions for the parameter(s), an idea that was further generalized to the profile

likelihood method for marginal distributions for parameter(s).

The MLE method has many strengths.  First, it works with many types of parametric distributions,

including mixtures of parametric distributions. Second, it works with censored and/or binned data,

e.g., measurements reported as "nondetect" with a stated detection limit. Third, it works with

truncated distributions. Fourth, it produces joint confidence regions with the proper correlations

among the parameters being estimated. Fifth, as the number of data points grows large, it

converges asymptotically to Normal theory and produces joint confidence regions as ellipses.

Sixth, with one, two, or three fitted parameters, it produces results that are easily visualized and

used in "two-dimensional" Monte Carlo simulations.

We employ a four step process to apply maximum likelihood concepts to estimate both variability

and uncertainty in distributions fitted to data.  In the first step, which is common to many methods

including parametric bootstrap, we use graphical methods from exploratory data analysis to see if a

parametric distribution may reasonably fit the data. In the second step, which is also common to

other methods, we fit a first-order random variable, i.e, an ordinary random variable represented

by parametric distribution with fixed parameters, to the data. In the third step, we develop and

explore the likelihood function (and the loglikelihood function) for the data (see, for example:

Mood et al, 1974; Edwards, 1992; Keeping, 1995). In the final step, we differentiate the

loglikelihood function to develop and fit second-order random variables to the data (Cox and Snell,

1989; Ross, 1990). Although the MLE method is quite general, it is important to check the

intermediate and final results using graphs and plots.
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3 . 3 Overview of Two-Dimensional Simulation of Variability and Uncertainty

As a means for gaining insight into the selection of a parametric distribution to represent a data set,

one of the methods we employ is to simulate the uncertainty in the cumulative distribution function

for the fitted distribution, and to compare the probability bounds for the cdf with the original data

set.  This is done using a two-dimensional approach to probabilistic simulation.  The two-

dimensional simulation approach used here is based upon that employed by Frey and Rhodes

(1996).  

We ascribe uncertainty to the parameters of parametric distributions that have been fitted to data

sets. Using either bootstrap simulation or the likelihood-based approach, we develop a set of

paired values of possible distribution parameter values.  The paired values retain any dependencies

that exist between parameters.  Each pair of values describes an alternative parametric probability

distribution model that is consistent with the original data set.  To evaluate the overall uncertainty

regarding the range of possible frequency distributions that might be used to describe variability in

a model input, paired values of the parameters of the are entered into the “outer loop” of the two-

dimensional simulation. In the “inner loop” of the two-dimensional simulation, a single pair of

parameter values forms the basis for generating random samples from a fully-specified parametric

distribution.  This approach is illustrated in the case studies for each of the three data sets.

4 .0 Application of Bootstrap Simulation and Maximum Likelihood

Methods to Data Set 1

In this case, we know a priori that the 19 data points of DS1 came from a Lognormal distribution.

As a check, we find that it is not possible to reject the Lognormal distribution as a plausible fit to

the data set by using statistical tests (such as the Wilks-Shapiro test previously noted) and through

graphical analysis of the data.  For example, Figure 1 shows the log-transformed data in a Normal
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probability plot (Burmaster and Hull, 1996; D'Agostino and Stephens, 1986) which is used to fit a

Lognormal distribution to DS1 (Aitchison and Brown, 1957; Crow and Shimizu, 1988) where:

ln[      X      ] ~ Normal[ µ, σ ] (6)

which is equivalent to:

     X      ~ exp[ Normal[ µ, σ ] ] (7)

where ln[ • ] represents the Napierian (or natural) logarithm function, exp[ • ] represents the

exponential function, and Normal[ µ, σ ] represents the Normal or Gaussian distribution with

mean µ and standard deviation σ (with σ > 0). From the probability plot shown in Figure 1, we

find the point values µ̂  = 2.014 and σ̂  = 0.992 from the intercept and the slope, respectively, of

the straight line fit to the plot using ordinary least-squares regression.  The adjusted coefficient of

variation for the regression model is 0.992.

An alternative method for estimating the parameters of the Lognormal distribution is the method of

matching moments (MoMM).  In this method, the arithmetic mean and standard deviation of the

Napierian logarithm of the data set are used to estimate the parameters of the distribution, as

indicated in Equation (6).  An alternative method for specifying a Lognormal distribution is to use

the geometric mean and geometric standard deviation.  These are related to the arithmetic mean and

standard deviation of ln(x) as follows:

  µg = exp(µ)) (8)
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  σg = exp(σ)) (9)

Using the MoMM, the geometric mean is 7.49 and the geometric standard deviation is 2.78.  As

described in Section 4.2, we also employ maximum likelihood parameter estimation, which yields

a geometric mean of 7.49 and a geometric standard deviation of 2.71.  The maximum likelihood

method yields parameter estimates that do not preserve the arithmetic moments (e.g., mean,

variance) of the logarithm of the original data set.  This is because the MLE approach is not

predicated upon preserving the central moments of the data set; instead, it is predicated upon

finding a most likely distribution consistent with all of the data points.

4 . 1 Application of Bootstrap Simulation to Data Set 1

Bootstrap simulations were performed with DS1 to illustrate factors to consider in selecting a

parametric distribution for representing the data and to quantify the uncertainty in the selected

distribution due to random sampling error associated with a finite sample size.

4 . 1 . 1 Uncertainty in the Central Moments of a Data Set

The central moments of a data set can aid in identifying an appropriate parametric distribution.

Parametric distributions can be characterized using a “moment plane” based upon their skewness

and kurtosis (e.g., Hahn and Shapiro, 1967). We consider how uncertainty in these statistics can

be estimated using bootstrap simulation..

Skewness measures the asymmetry of a distribution.  For quantities that must be nonnegative,

such as concentrations, intake rates, exposure durations, and many other exposure parameters, it is

common to have positively skewed distributions that reflect variability.  Kurtosis measures the

peakedness of a distribution.  A flat distribution, such as the Uniform distribution, has a lower

kurtosis than a highly peaked distribution, such as the Normal or Lognormal distributions.
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Four alternative bootstrap simulations were done based upon DS1.  In the first case, the 19 data

values were resampled.  In the other three cases, an underlying parametric distribution was

assumed.  These three cases are based upon a Normal distribution, Lognormal distribution, and

Gamma distribution, respectively.  The parameters for the Lognormal and Gamma distributions

were estimated using MoMM (e.g.,  Hahn and Shapiro, 1967).  For all four cases, B = 1,000

bootstrap samples each of size n = 19 were drawn from the assumed frequency distribution.  The

1,000 pairs of estimated skewness and kurtosis for each of the four cases are shown as scatter

plots in Figure 2.

The results illustrate that resampling of DS1 produces a bivariate distribution for the skewness and

kurtosis which is most similar to that which is obtained based upon Lognormal bootstrap

simulation.  However, it is also the case that the Gamma distribution yields a similar pattern.

Thus, it is possible that a variety of positively skewed probability distribution models could be

accepted as adequate fits to the data given that only 19 data points are available.

The Normal distribution yields a bivariate distribution for the skewness and kurtosis which is

substantially different than for the other three cases.  The average skewness for the Normal case is

zero, whereas for the resampling and Gamma distribution cases the skewness is nonnegative.  A

subtle result here is that there are some replications of skewness for the Lognormal case which are

negative.  This indicates that it is possible, with small sample sizes, to observe a data set which is

negatively skewed but which in fact was obtained from a parent population that is positively

skewed.  The Normal distribution tends to have lower kurtosis (less peakedness) than the

positively skewed distributions.



14

In all cases, the uncertainty in the skewness and kurtosis is large.  For example, the uncertainty in

the skewness has a range of more than three from the lowest to the highest values in the

simulation, while the kurtosis varies over a range of approximately 14 in the resampling and

Lognormal bootstrap cases.

4 . 1 . 2 Uncertainty in the Frequency Distribution for Variability

Based upon the results of the previous section, it was decided to use the Lognormal distribution to

represent data set DS1.  The parametric distribution fitted using MoMM was assumed as the

distribution, F, from which B=2,000 bootstrap simulations of data sets with 19 data points were

made.  For each bootstrap sample, a replication was made of the distribution parameters using

MoMM.  Each pair of distribution parameters obtained from a bootstrap sample represents a

possible frequency distribution describing variability in the data set.  Using the 2,000 replications

of the distribution parameters, a total of 2,000 plausible distributions were simulated in a two-

dimensional framework.  For each distribution, 2,000 samples were simulated using Monte Carlo

simulation.  Thus, a total of four million data points were simulated.  This sample size is somewhat

arbitrary but is sufficiently large to ensure stable results and to allow for calculations at the 95th

percentile of variability.  The results are shown in Figure 3.

The results illustrate that, for a positively skewed quantity, the uncertainty in the distribution

becomes largest at the upper tail.  For example, the uncertainty at the 5th percentile of variability

has a 95 percent probability range from 0.7 to 2.9.  In contrast, at the 95th percentile of variability,

the 95 percent probability range is from 19.0 to 80.8.

It is also possible to construct a confidence interval regarding what fraction of the population of

data values will be less than or equal to a given number.  For example, the fraction of the

population that has a value less than or equal to 10 is between approximately 0.45 and 0.80 within

a 95 percent probability range.  Thus, if a point estimate is selected for the random variable, there
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is uncertainty regarding its percentile within the population.  If a point estimate is selected for the

percentile of the population, there is uncertainty regarding the true value of the random variable at

that percentile.

Two-dimensional analysis of variability and uncertainty can be used to produce a point estimate, if

so desired by an analyst or decision maker.  However, in order to select a point estimate, it is

necessary to specify both the percentile of the population of interest, which reflects variability, and

the desired confidence level or probability band, which reflects uncertainty.  For example, one

point estimate would be the 63rd percentile of uncertainty for the 81st percentile of variability,

which in this case is 19.6.

A similar case study was done in which parameter estimates were based upon MLE.  The

parameters of the fitted distribution were estimated based upon MLE, and for each bootstrap

replication of the data set, new parameters were calculated using MLE.  For DS1, the results when

comparing MoMM and maximum likelihood estimation in the context of bootstrap simulation were

similar, as indicated in Table 2.  While there are minor quantitative differences in most cases, the

results are qualitative similar in this example.

4 . 2 Application of the MLE Method to Data Set 1

Based on standard methods in logarithmic space, the probability distribution for drawing a single

random value from the model in Equation (6) is (Evans et al., 1993):

p[ ln[      X      ] | µ, σ ] =
1

σ   2 π
  • exp[ - 

1
2  • 

(ln(x) - µ)2

σ2
  ] (10)

and the likelihood function for a single, randomly drawn sample, xi, is:
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p[ ln( xi ) | µ, σ ] =
1

σ   2 π
  • exp[ - 

1
2  • 

(ln(xi) - µ)2

σ2
  ] (11)

In this framework, the probability of drawing N independent random samples is:

Probability = Π [ p[ ln(xi) | µ, σ ] ] (12)

and the likelihood function for the N independent random samples is:

Likelihood = Π [ p[ µ, σ | ln(xi) ] ] (13)

The loglikelihood function, J, for the N independent random samples is a function of µ and σ:

LogLikelihood = Σ [ ln [ p[ µ, σ | ln(xi) ] ] ]

J[ µ, σ ] = Σ [ - 12  ln[2 π] - ln[σ] - 
1
2  • 

(ln(xi) - µ)2

σ2
  ]

= - 
N
2   ln[2 π] - N ln[σ] - 

1
2  • Σ[ 

(ln(xi) - µ)2

σ2
  ] (14)

Figure 4(a) shows a plot of this surface as a function of µ and σ.

The values of µ and σ that maximize the loglikelihood function for the sample are called the MLE

estimates µ̂  and σ̂ ; each is a point value.  In this example, the loglikelihood function has a single

maximum at { µ̂  = 2.014, σ̂  = 0.997}, corresponding to a maximum value for J of -26.9. In

Figure 4(a), the dot near the center of the plot shows the locations of { µ̂ , σ̂  }.
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Again using standard methods (Mood et al, 1974; Cox & Snell, 1989; Edwards, 1992; Keeping,

1995), contours of the loglikelihood function are used to define the joint confidence region for {µ,

σ}. For example, the 95-percent joint confidence region is defined by this contour:

J[ µ, σ ] = J[ µ̂ , σ̂  ] - 
χ2 0.05

2  (with df = 2) (15)

= J[ µ̂ , σ̂  ] - 
5.991

2  

where χ2 0.05 refers to the ChiSquared (χ2) distribution with two degrees of freedom (df = 2).

Similarly, the 90-percent and 50-percent joint confidence regions follow similar contours with

χ2 0.10 and χ2 0.50, respectively, substituted into Equation (15) (each with df = 2). The solid lines

in Figure 4(b) show the 95-, 90- and 50-percent joint confidence regions as the largest,

intermediate, and smallest ovals, respectively (Wolfram, 1991; Wickham-Jones, 1994). Box &

Tiao (1973, Chapter 2) present and discuss similar plots (and their corresponding marginal

distributions) in an illuminating way.

Again using standard methods (Mood et al, 1974; Cox & Snell, 1989; Edwards, 1992; Keeping,

1995), the observed information      matrix     for the sample equals:

  

ObsInfo =
–

∂2J
∂µ2 –

∂2J
∂µ∂σ

–
∂2J

∂µ∂σ –
∂2J
∂σ2

µ, σ (16)
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and, under the standard Taylor series approximation and the standard regularity conditions (both

met in this example), µ and σ are distributed according to a MultiVariate Normal (MVN)

distribution with this variance-covariance      matrix    : [EndNote 1].

∑ = Inverse[ ObsInfo ] (17)

  Σ =
Var[µ] Cov[µ,σ]

Cov[σ,µ] Var[σ] (18)

With the Taylor series approximation to the loglikelihood function, the approximations to the joint

confidence regions are ellipses. For example, the ellipse that approximates the 95-percent joint

confidence region for { µ, σ } is this contour of the MultiVariate Normal distribution (MVN):

MVN[     µ    ,     σ     ] =
1

2  π  Var(µ) Var(σ)  1   -  
Cov2( µ , σ   )

Var( µ  ) Var( σ   )

   • exp [-  
χ2 0.05

2  ]

(with df = 2) (19)

Similarly, the 90-percent and 50-percent joint confidence regions follow similar ellipses with χ2

0.10 and χ2 0.50, respectively, substituted into Eqn `9 (each with df = 2).

Applying these methods to DS1, we find that µ̂  and σ̂  (where a single underscore denotes a first

order probability distribution) are each well approximated by Normal distributions with vanishing

correlation.

Data Set 1

µ̂ N(2.014, 0.229)
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σ̂ N(0.997, 0.162)

Corr[ µ̂ , σ̂] 0

and with the constraint σ̂  > 0. Thus, we have now fit this second-order random variable (denoted

by the double underscore) to the data:

ln[      X      ] ~ Normal[     µ    ,     σ     ] (20)

which is equivalent to:

     X      ~ exp[ Normal[     µ    ,     σ     ] ] (6’)

The dashed ovals in Figure 4(b) show the 95-, 90- and 50-percent joint confidence regions as the

largest, intermediate, smallest    ellipses   , respectively. In these figures, as expected, the joint

confidence regions developed from the Taylor series approximation to the loglikelihood function

(the ellipses shown with dashed lines) are similar to the joint confidence regions developed directly

from the loglikelihood function (the ovals shown with solid lines). As the number of data points

increases, the ellipses (dashed lines) and the ovals (solid lines) will converge.

In Figure 5, the lines show the 5th- to 95th-percentile confidence bands on the probability plot

using the isopleths developed in Burmaster & Wilson (1996). [EndNote 2]. Figures 6(a) and 6(b)

show multiple plots (n = 50) of the CDF and PDF as a way to visualize this LogNormal 2RV.
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As expected, the arithmetic mean and the arithmetic standard deviation exhibit a functional

dependency (i.e., the values are not independent). Figures 7(a) and 7(b) show the two marginal

PDFs for the arithmetic mean and standard deviation, as estimated using a Normal kernel estimator

(with σkernel = 1) (see, Silverman, 1986).

From the equation in EndNote 2 (Burmaster & Wilson, 1996), we estimate the 95-percent

confidence    interval    for the uncertainty for the 95th- percentile of the variability in this 2RV as

(19.4, 76.9). Using the same equation, we estimate that the 63rd-percentile of the uncertainty in the

81st-percentile of the variability in this 2RV equals 19.7

4 . 3 Discussion

Both the bootstrap and MLE-based approaches produced similar results for the confidence intervals

for the arithmetic mean, arithmetic standard deviation, and 95th percentile of variability, as well as

for the 63rd percentile of uncertainty for the 81st percentile of variability..

All of the 19 data points fall within the 95 percent confidence interval for the cumulative

distribution function based upon both approaches. As estimated by different methods, the estimates

{   µ̂ , σ̂  } are close to { µ = 2, σ = 1 }, which are the values used to synthesize the 19 data points.

5 .0 Application of Bootstrap Simulation and Maximum Likelihood

Methods to Data Set 2

Data Set 2 (DS2) is an empirical data set for which the true population distribution is unknown.

The first steps in evaluating this data set are to visualize the data using various types of graphs and

to evaluate the plausibility of alternative probability distribution models that might be used to
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represent the data. As shown in Figure 8, it appears that, among other possibilities, either a

Normal or a Lognormal distribution may be used to represent the data.

Using ordinary least squares regression, the coefficient of determination (R2) for the best fit

Normal distribution is 0.94, whereas the R2 value for the best fit Lognormal distribution is 0.82.

Several other statistical tests were employed, including Kolmogorov-Smirnov, Anderson-Darling,

and Wilk-Shapiro. These methods are discussed elsewhere (e.g., Ang and Tang, 1975;

D’Agostino and Stephens, 1986).  The overall results of the tests were that the Normal distribution

appears to better fit the data, but that the Lognormal distribution is not an implausible model to use.

Because the statistical tests tend to be inconclusive in this case, the selection of an appropriate

parametric distribution must be guided by knowledge of the processes that generated the data.  Ott

(1990, 1995) presents theory and evidence that many empirical measurements for concentrations of

contaminants in environmental media follow Lognormal distributions.

5 . 1 Application of Bootstrap Simulation to Data Set 2

We used bootstrap simulation to estimate the uncertainty regarding the skewness and kurtosis of

the data set based upon alternative assumptions regarding the underlying distribution for the data.

For this preliminary exploration of the data, we develop parameter estimates based upon MoMM.

The results of 1,000 bootstrap replications of the bivariate distributions for the skewness and

kurtosis for four alternative probability models are shown in Figure 9.  The simulation based upon

resampling indicates that, although Data Set 2 is negatively skewed, is possible that the data were

obtained from a parent population which is positively skewed.  In comparing the scatter plots, it is

apparent that the bivariate distribution of the skewness and kurtosis for the fitted Normal

distribution is more similar to that based upon resampling than is the case for the results based

upon fitted Lognormal or Gamma distributions. However, these results also indicate that it is
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possible to obtain a negatively skewed random sample of small size (in this case, n = 9) from a

Lognormal distribution. Thus, it is not unreasonable to assume that the data in Data Set 2 are in fact

from a positively skewed population distribution.

Using parametric bootstrap simulation, B=2,000 replications of the data set of 9 values were made

for each of the following cases:  (a) Normal distribution, for which MoMM and MLE yield the

same parameter estimates ( µ̂  = 0.221, σ̂  = 0.0993); (b) Lognormal distribution using MoMM

parameter estimates ( µ̂= -1.652, σ̂  = 0.643); and (c) Lognormal distribution using MLE

parameter estimates ( µ̂= -1.652, σ̂  = 0.607). For each frequency distribution, 2,000 data points

were simulated in a second dimension, for a total of 4 million data points.  The results are shown

in Figure 10(a) for the fitted Normal distribution and in Figure 10(b) for the Lognormal

distribution fitted using MoMM.  The results for the MLE-based simulations of the Lognormal

distribution were sufficiently similar to Figure 10(b) that they are not shown.

Figure 10(a) indicates that the data typically fall within or close to a 50 percent confidence band for

the best fit Normal distribution, and that all of the nine data points are well within the 95 percent

confidence interval for the cdf.  In contrast, only two of the nine data points are contained within

the 50 percent confidence interval for the Lognormal distribution.  However, all of the data points

are within a 95 percent confidence interval.  These results suggest that the Lognormal distribution

is a plausible, if less than perfect, model for describing the data.  Even though the Normal

distribution appears to be a better fit to the data, it can lead to implausible predictions of negative

values, as indicated in Figure 10(a), and, therefore, we deem it unacceptable.

The 95 percent confidence intervals for selected statistics for the three cases are summarized in

Table 3.  All three yield similar estimates of the lower bound of the 95 percent confidence interval

for the 95th percentile of variability.  The upper bound, which in all cases is larger than the largest

data point, is strongly sensitive to assumptions regarding the distribution and weakly sensitive to
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the parameter estimation method.  As an additional point of comparison, we also consider the 63rd

percentile of uncertainty for the 81st percentile for variability.  This point estimate is 0.32 ng/g for

the Normal distribution, 0.36 ng/g for the Lognormal distribution based upon MoMM parameter

estimates, and 0.34 ng/g for the Lognormal distribution based upon maximum likelihood parameter

estimates. To verify the bootstrap method, the confidence intervals obtained for the mean of the

fitted Normal distribution were compared to analytical solutions and found to be similar.

5 . 2 Application of the Likelihood-Based Method to Data Set 2

In this section, we use methods that parallel those for DS1 in Section 4.2, and we focus upon

evaluation of the Lognormal distribution.  Figure 11(a) shows a plot of the loglikelihood function

as a function of µ and σ. The MLE estimates are µ̂  = -1.652 and σ̂  = 0.607.  In Figure 11(a), the

dot near the center of the plot shows the single maximum for the loglikelihood function at { µ̂ , σ̂}.

We find that µ̂  and σ̂  are each reasonably approximated by Normal distributions with vanishing

correlation.

Data Set 1

µ̂ N(-1.652, 0.202)

σ̂ N(0.607, 0.143)

Corr[ µ̂ , σ̂] 0

and with the constraint σ̂  > 0.
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The dashed lines Figure 11(b) show the 95-, 90- and 50-percent joint confidence regions for the

distribution parameters as the largest, intermediate, smallest areas, respectively. In these figures, as

expected, the joint confidence regions developed from the Taylor series approximation to the

loglikelihood function (the    ellipses    shown with dashed lines) are similar to the joint confidence

regions developed directly from the loglikelihood function (the     ovals    shown with solid lines). As

the number of data points increases, the ellipses (dashed lines) and the ovals (solid lines) will

converge.  In Figure 12, the lines show the 5th- to 95th-percentile confidence band on the

probability plot.  All of the data lie between the 5th- to 95th-percent confidence lines.  Figures 13(a)

and 13(b) show multiple plots (n = 50) of the CDF and PDF as a way to visualize this Lognormal

2RV.

We estimate the 95-percent confidence    interval    for the uncertainty for the 95th- percentile of the

variability in this Lognormal 2RV as (0.28, 0.96). We estimate that the 63rd-percentile of the

uncertainty in the 81st-percentile of the variability in this 2RV equals 0.35.

5 . 3 Discussion

When the same parameter point estimates were used, both the bootstrap simulation and likelihood-

based approaches provided similar quantitative results.  For example, the lower bound of the 95

percent confidence interval for the 95th percentile of variability is essentially the same in all cases,

regardless of distribution type.  The upper bound of the confidence interval varies within 10

percent for all cases in which a Lognormal distribution was assumed.  The 63rd percentile of

uncertainty for the 81st percentile of variability is nearly identical for all Lognormal cases.

For Data Set 2, we evaluated both Normal and Lognormal distributions as possible fits to the data.

The Normal distribution would lead to unacceptable predictions of negative values.  Thus,

although a Normal distribution is a better fit to the data based upon statistical tests, it is not
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appropriate for this data set.  Even though statistical tests do not point to the Lognormal

distribution as being the best fit, it is plausible that a negatively skewed data set of n = 9 could be a

sample from a Lognormal distribution, as shown in Section 5.1.  Therefore, we suggest that a

Lognormal distribution is an appropriate representation of this data set.

6 .0 Application of Bootstrap Simulation and Maximum Likelihood

Methods to Data Set 3

Data Set 3 is comprised of five data points with values between 0 and 1.  It is not known a priori

from what type of distribution these data are drawn.  However, a Beta distribution seems

reasonable given that these data are generated from a process with physical constraints on the

maximum and minimum values.

The probability density function of the two-parameter Beta distribution, which is bounded to

values between 0 and 1, is:

  

f(x) =
Γ(α + β)
Γ(α) Γ(β)

xα–1 (1 – x)β–1, 0 ≤ x ≤ 1 (21)

where Γ(x) is the Gamma function of x.  The parameters of the distribution are related to the

arithmetic mean and variance via MoMM as follows (Hahn and Shapiro, 1967):

  

µ = α
α + β

(22)

  

σ2 =
αβ

(α + β)2(α + β + 1)

(23)

The mean and variance of Data Set 3 are 0.424 and 0.139, respectively.  Therefore, the MoMM

parameter estimates are α = 0.323 and β = 0.439.  The maximum likelihood parameter estimates

are α = 0.326 and β = 0.199.  The maximum likelihood estimates were obtained by setting the data
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point of 1.0 to a value of 0.9999999, since the loglikelihood function (presented in the next

section) is singular at a value of 1.  Because this data point is somewhat suspect (it is not likely that

all of the chromium would be captured in the FGD system), we also considered an alternative data

set in which the value of 1 is set to 0.96.  The original data set is designated as DS3a, and the

adjusted data set is designated as DS3b.  For DS3b, the parameter estimates are α = 0.377 and β =

0.529 from MoMM, and α = 0.652 and β = 0.816 from MLE.

6 . 1 Application of Bootstrap Simulation to Data Set 3

For each of the two data sets, DS3a and DS3b, we use both MoMM and MLE to fit distributions

and to calculate parameter values for each bootstrap replication.  The results are shown graphically

in Figure 14 and are summarized numerically in Table 4.

The Beta distribution is more difficult to work with in bootstrap simulation than the Normal or

Lognormal distributions.  For example, MoMM can yield negative parameter values for some

combinations of sample mean and standard deviation.  The maximum likelihood method can fail to

converge on a solution when there are combinations of data values very close to both 0 and 1, and

the likelihood function is singular for values identically equal to 0 or 1.  Because of this, it was not

possible in all cases to calculate parameter values from a given bootstrap replication of the data set.

When a bootstrap sample yielded an infeasible set of parameter estimates, that sample was

discarded and replaced with a new randomly drawn sample. The inability to calculate parameter

estimates in some situations is an inherent limitation of each of the two parameter estimation

methods, and it is not a property of the bootstrap method itself.

The MoMM and MLE approaches produced different best fit distributions and different bootstrap-

based uncertainty estimates for a given data set.  For example, comparing Figures 14(a) and 14(b)

for DS3a, the bootstrap based upon MoMM estimates yields narrower uncertainty ranges for the

lower percentiles of variability and wider uncertainty ranges for the upper percentiles of variability.
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For DS3b, the MoMM-based bootstrap simulation typically has wider uncertainty bounds for all

percentiles of variability above the 5th percentile.

The distributions fitted by MLE are more sensitive to the extreme data value of 1.0 than are the

distributions fitted by MoMM.  For example, the shape of the MLE-fitted distribution for DS3a in

Figure 14(b) is significantly altered by the data point at 1.0 compared to all other cases shown in

Figure 14.  In fact, the shape of the CDF is so distorted that it is close to only three of the data

points, whereas in all other cases the best fit distribution is reasonably close to all data points.

While there is qualitatively and quantitatively little difference in the uncertainty estimates between

DS3a and DS3b based upon MoMM-fitted distributions, there are significant differences between

the two MLE-fitted cases as a result of the sensitivity of the fit to the one data point.

Figure 15(a) illustrates the relationship between uncertainty in the arithmetic mean and variance for

the Beta distribution fitted by MoMM for DS3a as revealed by 2,000 valid bootstrap samples.  The

range of uncertainty in the mean is comparable to the variability in the observed data set.  The

distributions of the mean and variance have a non-linear, non-monotonic dependence.  Because the

Beta distribution is constrained to have values between 0 and 1, as the mean approaches either 0 or

1, the standard deviation must become smaller than for mean values close to 0.5.

An example of uncertainty in the parameters of the Beta distribution is illustrated in Figure 15(b).

The scatter plots indicate that there is a dependence between the two parameters.  Furthermore, the

conditional distribution for β has a non-constant variance with respect to α. Thus, bootstrap

simulation is capable of capturing complex dependencies among statistics and among distribution

parameters. Frey and Rhodes (1996, 1998) illustrate how failure to properly account for

dependencies between distribution parameters can lead to highly erroneous estimates of

uncertainty.
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6 . 2 Application of the Maximum Likelihood-Based Method to Data Set 3b

Since DS3b produces less distortion of the fitted distribution when using MLE, and since we

suspect that the value of 1.0 in DS3a is not a reliable data point, we use DS3b as an example here.

Working in linear space, the probability distribution for drawing a single random value from a Beta

distribution is (Evans et al, 1993):

p[      X      | α , β ] =
xα -1 (1 - x)β-1

BetaFn( α , β )
 (24)

where BetaFn( α, β ) = ⌡
⌠

0

1
   u α-1 (1-u) β-1 du. The Beta Function can also be represented as

  BetaFn(α, β) = [Γ(α) Γ(β)]/Γ(α + β).  The likelihood function for a single, randomly drawn

sample, xi, is:

p[ xi | µ, σ ] =
xiα -1 (1 - xi)β-1

BetaFn( α , β )
 (25)

The loglikelihood function, J, for N independent random samples is:

LogLikelihood = Σ [ ln [ p[ α, β | xi ] ] ]

J[ α, β ] = Σ [ (α-1) ln[ xi ] + (β-1) ln[1 - xi] - ln[BetaFn( α, β ) ] (26)

The point values of α and β that maximize the loglikelihood function for the DS3b sample are the

MLE estimates α̂ = 0.652 and β̂  = 0.816. The loglikelihood function has a single maximum at {

α̂, β̂  } as shown in Figure 16(a) by the dot near the center of the plot.
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Contours of the loglikelihood function define the joint confidence region for { α, β }. For

example, the 95-percent joint confidence region in Figure 16(b) is defined by this contour:

J[ α , β ] = J[ α̂, β̂  ] - 
χ2 0.05

2  (with df = 2)

= J[ α̂, β̂  ] - 
5.991

2  (27)

The distorted ovals shown as solid lines in Figure 16(b) show these 50-, 90-, and 95-percent joint

confidence regions.  

Under the same assumptions as the previous examples, we assume that α and β are distributed

according to a MultiVariate Normal distribution (MVN) with the variance-covariance      matrix     equal

to the inverse of the observed information      matrix     for the sample.  With the Taylor series

approximation to the loglikelihood function, the approximations to the joint confidence regions are

   ellipses   . For example, the ellipse that approximates the 95-percent joint confidence region for { α,

β } is this contour of the MultiVariate Normal distribution (MVN):

MVN[     α    ,     β     ] =
1

2  π  Var(α) Var(β)  1 - 
Cov 2( α , β   )

Var(α) Var(β)

      • exp [-  
χ 2 0 .05

2  ]

(with df = 2) (28)
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Applying these methods to DS3b, we find that α̂  and β̂  are each approximated by Normal

distributions with positive correlation.

Data Set 3

α̂ N(0.6521, 0.3672)

β̂ N(0.8165, 0.4853)

Corr( α̂, β̂) 0.5742

and with the two constraints α̂ >0 and β̂  > 0. Note that Corr( α̂, β̂) is the correlation between α̂

and β̂  ). The results here correspond to this second-order random variable:

     X      ~ Beta[     α    ,     β     ] (29)

The dashed lines Figure 16(b) show the 95-, 90- and 50-percent joint confidence regions as the

largest, intermediate, smallest    ellipses   , respectively. In these figures, the joint confidence regions

developed from the Taylor series approximation to the loglikelihood function (the ellipses shown

with dashed lines) differ markedly from the joint confidence regions developed directly from the

loglikelihood function (the distorted     ovals    shown in solid lines). As the number of data points

increases, the ellipses and the ovals will converge, but they surely differ when n = 5.

When sampling from the correlated bivariate Normal for     α     and     β     , we use the constraints     α     >0 and

    β     > 0 to select valid realizations, i.e., we truncate the bivariate Normal distribution.
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In Figures 17(a) and 17(b), we show multiple (n = 50) CDFs and PDFs as a way to visualize this

Beta 2RV.  One notable feature from Figure 17(b) is that the shape of the Beta distribution is

highly uncertain, varying between “J” and “U” shapes for the PDF.

From nested Monte Carlo simulations, we estimate the 95-percent confidence    interval    for the

uncertainty for the 95th- percentile of the variability in this Beta 2RV as (0.624, 0.999+). We

estimate that the 63rd-percentile of the uncertainty in the 81st-percentile of the variability equals

0.792.

6 . 3 Discussion

Both bootstrap simulation and the likelihood-based methods reveal large uncertainty in Data Set 3.

Quantitative differences in the estimates of uncertainty arise as a result of different parameter

estimation methods.  The maximum likelihood parameter estimates and best-fit distribution shape

were found to be highly sensitive to one of the data points, which in turn influences the estimates

of uncertainty.  When the data were adjusted to minimize the influence of the largest data point, the

best fit distributions are more nearly similar; however, the range of uncertainty obtained from the

bootstrap based upon MoMM was significantly higher than that from bootstrap based upon MLE.

The bootstrap and maximum likelihood approaches yield similar results for the 63rd-percentile of

the uncertainty in the 81st-percentile of the variability (0.815 from bootstrap versus 0.792 from the

likelihood approach), but the bootstrap approach produces a wider confidence interval for the 95th

percentile of variability.

In all cases but one, all five data points are either contained within or just barely outside of the 50

percent confidence interval.  The exception is the MLE-based bootstrap simulation for DS3a, in
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which the CDF is shifted away from two data points in order to better fit through the value at 1.0.

In all cases, the data points are within the 95 percent confidence intervals.

For the Beta distribution, the MoMM parameter estimates are less sensitive to extreme values than

the MLE estimates.  The bounded nature of the Beta distribution and proximity of data values to

singularity points in the loglikelihood function can lead to MLE parameter values that are highly

sensitive to only a fraction of the data points.  MoMM parameter estimates appear to produce a

wider range of uncertainty, as illustrated in situations where the best fit is more nearly similar when

comparing MoMM and MLE.  This is expected, since MoMM produces less efficient statistical

estimators than MLE, especially for small sample sizes.

7 .0 Discussion and Conclusions

We have demonstrated the use of two different methods for quantifying uncertainty in distributions

based upon random sampling error.  The bootstrap simulation method is a powerful technique for

estimating confidence intervals and sampling distributions for various statistics of data sets and

distributions, and it does not require any a priori assumptions regarding the shape of sampling

distributions.  We have shown here how bootstrap simulation can be used to develop confidence

bounds on entire distributions and, therefore, to produce uncertainty estimates for frequency

distributions.

Bootstrap simulation works with many distributional assumptions, include resampling of the

original data set, parametric distributions, empirical distributions, and mixture distributions.

Bootstrap simulation provides multivariate sampling distributions which capture the dependence

between marginal and conditional parameter distributions.  In some cases, such as for the mean

and variance of data drawn from a Beta distribution, the dependence is nonlinear and



33

nonmonotonic.  In other cases, such as between the parameters of a Beta distribution, the

dependence is linear but with nonconstant variance.

We have chosen to use the bootstrap-p method because of its relative simplicity compared to the

bootstrap-t approach.  We have also shown that it can generate appreciably wide estimates of

uncertainty, and compares favorably with the likelihood-based approach in this regard.

A potential limitation of bootstrap simulation is the precision of the estimates of the sampling

distributions.  We used B = 2,000 bootstrap samples in an effort to obtain more precision and to

avoid at least some biases inherent in bootstrap estimates of uncertainties in statistics.  Efron and

Tibshirani (1993) describe a “bias correction” method, BCa, which can be used to make inferences

regarding whether enough bootstrap samples have been generated to make accurate predictions of

the percentiles of a sampling distribution.  However, the BCa method must be used iteratively

during simulation.  The implementation of BCa or other more rigorous bootstrap sample size

estimation methods is a need for future work.  As a practical matter, B=2,000 produces smooth

contours, indicating that the results are not noticably affected by random sampling error due to the

number of bootstrap replications.

In both cases, we are applying perhaps new interpretations to the results of bootstrap simulation

and joint confidence regions for likelihood estimates.  Although both of these statistical methods

are frequentist in origin, the notion that sampling distributions represent uncertainty is more

consistent with a Bayesian interpretation.

The results we obtained specific to the three data sets we evaluated suggest that uncertainties due to

random sampling error can be quite large when few data are available.  Furthermore, the results

demonstrate that this type of uncertainty can be quantified.  For non-negative quantities described
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by positively skewed distributions, our results indicate, not surprisingly, that uncertainties become

very large in the upper tail.  For quantities bounded by 0 and 1, as for Data Set 3, the uncertainties

will tend to be largest in the central portion of the distribution.

The results can be sensitive to the parameter estimation method used.  For Data Sets 1 and 2, the

results obtained based upon either MoMM or maximum likelihood estimates for the parameters

were comparable.  However, for Data Sets 3a and 3b, MoMM and MLE parameter estimates in the

context of bootstrap simulation yielded quantitatively different results. Neither method is

necessarily more correct than the other, and differences are expected since they are predicated upon

different criteria regarding how to fit a distribution to data.  Depending on the nature of an

assessment, an analyst may wish to choose the approach that leads to the least overconfidence, or

largest estimate of uncertainty, in the model output.  Numerical experimentation is recommended in

order to identify how each method performs in a specific situation.

Our focus has been on characterizing uncertainty due to random sampling error associated with

data that was assumed to be a random representative sample.  Other possible sources of uncertainty

include, for example, measurement error and lack of representativeness of the data.  Measurement

error leads to observed variation within a measured data set that is larger than the true variability for

the quantity being measured.  Frey and Rhodes (1996) describe one approach for separating

measurement error from observed variability.  Even when measurement errors may seem large, it

is possible that random sampling error is the dominant source of uncertainty when few data points

are available.  Nonrepresentativeness often cannot be addressed statistically, because it requires

knowledge of a datum for the true average or true distribution of values.  Thus, expert judgment

may be required as a basis for making corrections due to lack of representativeness.



35

Finally, we recognize the need to explore other approaches to fitting second-order random

variables to data as well, such as: (i) methods based on Kolmogorov-Smirnov techniques (Bickel

& Doksum; 1977); and (ii) methods based on Bayesian techniques (Box & Tiao, 1973; Gelman et

al, 1995; O'Ruanaidh & Fitzgerald, 1996).
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9 .0 EndNotes

1. With ξ as a k × 1 vector, the MultiVariate Normal distribution has this probability density

function (Anderson, 1958; Rose & Smith, 1996):

ξ ~ MVN[ µ, ∑ ]

p[ ξ ] =
1

|∑ |1/2 (2 π)k/2
  • exp[ - 

1
2  • (ξ - µ)T ∑-1 (ξ - µ) ]

2. The isopleths for the confidence bands are (Burmaster & Wilson, 1996):

ln[     X     ] [ zU | zV ]    •   µµ + zV • µσ + zU •  (σµ )2  + (zV  • σσ )2     

where ln[     X     ] [ zU | zV ] denotes the point value at zU conditional on zV. In this equation, the

symbol "   •   " denotes "is approximately equal to." Thus, to approximate the point value for the 67th

percentile of uncertainty on the 95th percentile of variability of the Lognormal distribution, first

evaluate this equation with zV = 1.645 and zU = 0.440 and then exponentiate the result.
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Table 1.  Example Data Sets

Data Set 1 Data Set 2 Data Set 3a Data Set 3b

Data Point (DS1) (DS2) (DS3a) (DS3b)

1 2 0.05 0.03 0.03

2 2 0.09 0.18 0.18

3 3 0.18 0.40 0.40

4 3 0.21 0.51 0.51

5 4 0.25 1.00 0.96

6 4 0.28

7 4 0.28

8 4 0.30

9 6 0.35

10 6

11 7

12 8

13 8

14 11

15 15

16 23

17 23

18 32

19 101
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Table 2.  95 Percent Confidence Intervals for Selected Statistics for Data Set 1.

Statistic Method of Matching Moments
Estimates

Maximum Likelihood
Estimates

5th Percentile of Variability (0.7, 2.9) (0.13, 1.1)

50th Percentile of Variability (4.7, 11.9) (4.8, 11.9)

95th Percentile of Variability (19.0, 80.8) (18.0, 79.7)

Arithmetic Mean (6.9, 22.4) (7.0, 22.0)

Arithmetic Variance (26.5, 1,340) (25.3, 1,320)
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Table 3.  95 Percent Confidence Intervals for Selected Statistics for Data Set 2.

Statistic Normal
Distribution

Lognormal
Distribution
(MoMM)

Lognormal
Distribution

(MLE)

5th Percentile of Variability (-0.03, 0.16) (0.04, 0.13) (0.04, 0.13)

50th Percentile of Variability (0.15, 0.29) (0.12, 0.29) (0.13, 0.28)

95th Percentile of Variability (0.28, 0.48) (0.28, 1.02) (0.27, 0.98)

Arithmetic Mean (0.15, 0.28) (0.15, 0.37) (0.15, 0.35)

Arithmetic Variance (0.0027, 0.020) (0.0033, 0.10) (0.0028, 0.093)
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Table 4.  95 Percent Confidence Intervals for Selected Statistics Obtained from Parametric

Bootstrap Simulation of Data Sets 3a and 3b Based Upon Beta Distributions Fitted by

Method of Matching Moments (MoMM) and Maximum Likelihood Estimation (MLE).

Statistic DS3a
MoMM

DS3a
MLE

DS3b
MoMM

DS3b
MLE

5th Percentile of Variability (0, .22) (0, .81) (0, .23) (0, .22)

50th Percentile of Variability (0, .99) (0.11, 0.996) (0, 0.98) (0.11, 0.78)

95th Percentile of Variability (0.41, 1.00) (0.85, 1.00) (0.40, 1.00) (0.46, 0.999)

Parameter α (0.02, 2.22) (0.16, 7.15) (0.03, 2.34) (0.32, 5.79)

Parameter β (0.02, 5.54) (0.11, 1.32) (0.04, 6.14) (0.37, 7.75)

Arithmetic Mean (0.10, 0.75) (0.26, 0.95) (0.11, 0.73) (0.18, 0.72)

Arithmetic Variance (0.013, 0.23) (0.004, 0.27) (0.013, 0.23) (0.015, 0.20)


