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Abstract

Second-order random variables, i.e., parametric random variables with uncertain

parameters, give risk assessors a way to distinguish and represent both the variability

and the uncertainty in an exposure variable. In this manuscript, we explore ways to fit

second-order random variables to data using maximum likelihood estimation (MLE).

1.0 Introduction

When estimating exposures to chemicals in the environment, risk assessors need a way

to represent both the variability and the uncertainty in the exposure variables (see, e.g.,

NAS, 1994; NCRP, 1996; Burmaster & Wilson, 1996). In a probabilistic exposure

assessment, a risk assessor may use a second-order probability distribution to

represent the variability and the uncertainty in one or more of the exposure variables

(Bogen, 1990; MacIntosh et al, 1994; McKone, 1994; Frey & Rhodes, 1996; Hattis &

Barlow, 1996; Price et al, 1996). Although other authors have used either professional

judgment (e.g, Hoffman & Hammonds, 1994; NCRP, 1996; Barry, 1996; Cohen et al,

1996) or the bootstrap method (e.g., Frey, 1996) to develop second-order random

variables used in calculations and in "two-dimensional" Monte Carlo simulations, we

show how to use the method of maximum likelihood estimation (MLE) to fit second-

order distributions to data. In a "two-dimensional" Monte Carlo simulation, some or all of

the input variables and all of the output variables are represented by second-order

random variables (Burmaster & Wilson, 1996).
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Sir Ronald A. Fisher developed the method of maximum likelihood estimation (MLE) as

a powerful, general purpose method for fitting a parametric distribution to data. The

general idea is to choose an estimator for the parameter(s) in a distribution as that

function of the sample observations (i.e., data) which will, when substituted into the

distribution, make the probability of the sample a maximum (paraphrased from Keeping,

1995). He later generalized the idea to develop joint confidence regions for the

parameter(s), an idea that was further generalized to the profile likelihood method for

marginal distributions for parameter(s).

In this manuscript, we apply some of the standard MLE techniques to an original and

perturbed version of each of three data sets to show how to fit a second-order random

variable to data. Before using the MLE methods, we first select an appropriate family of

distributions through exploratory data analysis. In each of these six cases, MLE

methods readily determine the joint and marginal distributions for the data sets in a way

that can be easily used in "two-dimensional" Monte Carlo simulations.

2.0 Three Data Sets, Each with a Perturbation

In this manuscript, we consider three data sets, each in its original form and also in a

perturbed form. The first two data sets are synthetic (and unitless), but the third data set

comprises clinical measurements of body weights (kg) for a random sample of adult

women between the ages of 18 and 40 years. For each of the three data sets, we

investigate the original data and the perturbed data to see how the perturbation changes

the second-order distributions fit by maximum likelihood estimation (MLE).

Data Set 1 Original (DS1o in Table 1), a synthetic data set, contains 19 positive values

drawn randomly from a LogNormal distribution of the form exp[Normal(µ, σ)] with µ = 2

and σ = 1 and then rounded to the nearest integer. The arithmetic mean of the parent

distribution equals exp[µ + 0.5 σ2] = 12.2, approximately, and the arithmetic mean of this

sample equals 14, exactly. When tested by the Wilk-Shapiro (W-S) test for Normality

(Madansky, 1988), the natural logarithms of these 19 data points do not fail using

standard criteria (p-value = 0.1492).

Data Set 1 Perturbed (DS1p in Table 1), also a synthetic data set, contains 19 positive

values. The first 18 values are the same as those in DS1o, but we have perturbed the

largest value to change it from 101 in DS1o to 301 in DS1p. The arithmetic mean of

these 19 values equals 24.5, approximately. When tested by the Wilk-Shapiro (W-S)
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test for Normality, the natural logarithms of these 19 data points do fail using standard

criteria (p-value = 0.0096).

Data Set 2 Original (DS2o in Table 2), a synthetic data set, contains 25 positive values

randomly drawn from a Beta distribution of the form Beta[α, β] with α = 2 and β = 6 and

then rounded to two decimal places. The arithmetic mean of the parent distribution

equals (
α

α+β) = 0.25, exactly, and the arithmetic mean of this sample equals

approximately 0.28.

Data Set 2 Perturbed (DS2p in Table 2), also a synthetic data set, contains 25 positive

values. The first 24 values are the same as those in DS2o, but we have perturbed the

largest value to change it from 0.61 in DS2o to 0.75 in DS2p. The arithmetic mean of

these 25 values equals approximately 0.28.

Data Set 3 Original (DS3o in Table 3), a real data set, contains values of body weight

(kg) measured for a random sample of 1,958 adult women in the United States between

the ages of 18 and 40 years (Stern, 1996). In this instance, the original researchers

reported only key percentiles of the data, not all the individual values. Data Set 3

Perturbed (DS3p in Table 3) differs from the original measurements in the sense that we

consider how our inferences would change if the same percentile statistics arose from

measuring the body weights of 979 women (i.e., the same percentiles for body weight,

but from half as many subjects). Since the values in DS3o come from empirical

measurements for a random sample of adult women, we do not know a priori if they can

be fit by a parametric distribution; however, we do know that one or two LogNormal

distributions have been fit successfully to empirical measurements for the body weights

of another (larger) random sample of adult women between the ages of 18 and 75 years

(Brainard & Burmaster, 1992). Since we know selected percentiles for DS3o and do not

know the individual measurements in the data set, we will use a more general form of

MLE methods to fit a second-order distribution to these "binned" data.

 3.0 Overview of the MLE Approach

As detailed in the next sections, we fit second-order random variables to the original and

the perturbed versions of each of the three data sets in five steps. In the first step, we

use graphical methods from exploratory data analysis to see if a parametric distribution

may reasonably fit the data. In the second step, we fit a first-order random variable, i.e,



  revised for Human and Ecological Risk Assessment, 97-01

31 May 1997 4 © Alceon  ®, 1997

an ordinary random variable represented by parametric distribution with fixed

parameters, to the data. In the third step, we develop and explore the likelihood function

(and the loglikelihood function) for the data (see, for example: Mood et al, 1974;

Edwards, 1992; Keeping, 1995). In the final step, we differentiate the loglikelihood

function to develop and fit second-order random variables to the data (Cox & Snell,

1989; Ross, 1990). Although the MLE method is quite general, it is important to check

the intermediate and final results using graphs and plots.

In the next sections, we denote (i) real variables and real functions with plain letters,

(ii) first-order random variables with a single underscore, (ii) second-order random

variables with a double underscore, and (iv) vectors or matrices in bold.

4.0 The Method Applied to Data Set 1 -- Original and Perturbed

We know a priori that these synthetic data come from a LogNormal distribution.

Combining the first and second steps, we use LogNormal probability plots (Burmaster &

Hull, 1996; D'Agostino & Stephens, 1986) to fit this LogNormal distribution to the original

and the perturbed versions of DS1 (Aitchison & Brown, 1957; Crow & Shimizu, 1988):

ln[ X ] ~ Normal[ µ, σ ] Eqn 1

which is equivalent to:

X ~ exp[ Normal[ µ, σ ] ] Eqn 1'

where ln[ • ] represents the Napierian (or natural) logarithm function, exp[ • ] represents

the exponential function, and Normal[ µ, σ ] represents the Normal or Gaussian

distribution with mean µ and standard deviation σ (with σ > 0). From the probability plots
shown in Figures 1.1-O and -P, we find these point values for µ̂  and σ̂  from the

intercept and the slope, respectively, of the straight line fit to the plot using ordinary

least-squares regression:

Data Set 1

Original

Data Set 1

Perturbed

µ̂ 2.014 2.072

σ̂ 0.992 1.110

adjR2 0.922 0.845
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Based on standard methods in logarithmic space, the probability distribution for drawing

a single random value from the model in Eqn 1 is (Evans et al, 1993):

p[ ln[ X ] | µ, σ ] =
1

σ √2 π
 • exp[ - 12 • 

(ln(x) - µ)2
σ2  ] Eqn 2

and the likelihood function for a single, randomly drawn sample, xi, is:

p[ µ, σ | ln( xi ) ] =
1

σ √2 π
 • exp[ - 12 • 

(ln(xi) - µ)2
σ2  ] Eqn 3

In this framework, the probability of drawing N independent random samples is:

Probability = Π [ p[ ln(xi) | µ, σ ] ] Eqn 4

and the likelihood function for the N independent random samples is:

Likelihood = Π  [ p[ ln(xi) | µ, σ ] ] Eqn 5

The loglikelihood function for the N independent random samples is a function of µ and

σ:

LogLikelihood = Σ [ ln [ p[ µ, σ | ln(xi) ] ] ]

J[ µ, σ ] = Σ [ - 12 ln[2 π] - ln[σ] - 
1
2 • 

(ln(xi) - µ)2
σ2  ]

= - 
N
2 ln[2 π] - N ln[σ] - 

1
2 • Σ[ (ln(xi) - µ)2

σ2  ] Eqn 6

The values of µ and σ that maximize the loglikelihood function for the sample are called
the MLE estimates µ̂  and σ̂ ; each is a point value.

Data Set 1

Original

Data Set 1

Perturbed

µ̂ 2.014 2.072



  revised for Human and Ecological Risk Assessment, 97-01

31 May 1997 6 © Alceon  ®, 1997

σ̂ 0.997 1.163

max J -26.9 -29.8

In this example, the loglikelihood function has a single maximum at { µ̂ , σ̂  }. In Figures

1.2-O and -P, the dots near the center of the plot show the locations of { µ̂ , σ̂  }.

Again using standard methods (Mood et al, 1974; Cox & Snell, 1989; Edwards, 1992;

Keeping, 1995), certain contours of the loglikelihood function define the joint confidence

region for { µ, σ }. For example, the 95-percent joint confidence region is defined by this

contour:

J[ µ, σ ] = J[ µ̂ , σ̂  ] - 
χ2 0.05

2 (with df = 2) Eqn 7

= J[ µ̂ , σ̂  ] - 
5.991

2

where χ2 0.05 refers to the ChiSquared distribution with two degrees of freedom (df = 2).

Similarly, the 90-percent and 50-percent joint confidence regions follow similar contours

with χ2 0.10 and χ2 0.50, respectively, substituted into Eqn 7 (each with df = 2). The solid

lines Figures 1.2-O and -P show the 95-, 90- and 50-percent joint confidence regions as

the largest, intermediate, smallest ovals, respectively (Wolfram, 1991; Wickham-Jones,

1994). Box & Tiao (1973, Chapter 2) present and discuss similar plots (and their

corresponding marginal distributions) in an illuminating way.

Again using standard methods (Mood et al, 1974; Cox & Snell, 1989; Edwards, 1992;

Keeping, 1995), the observed information matrix for the sample equals:

ObsInfo = - 
∂2J
∂µ2 - 

∂2J
∂µ∂σ

- 
∂2J

∂σ∂µ - 
∂2J
∂σ2 µ̂ , σ̂ Eqn 8

and, under the standard Taylor series approximation and the standard regularity

conditions (both met in this example), µ and σ are distributed according to a MultiVariate

Normal (MVN) distribution with this variance-covariance matrix: [EndNote 1].

∑∑∑∑ = Inverse[ ObsInfo ] Eqn 9
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=  



 

 Var[ µ ]   Cov[ µ σ ]

 Cov[ σ µ ]   Var[ σ ]  Eqn 10

With the Taylor series approximation to the loglikelihood function, the approximations to

the joint confidence regions are ellipses. For example, the ellipse that approximates the

95-percent joint confidence region for { µ, σ } is this contour of the MultiVariate Normal

distribution (MVN) with df = 2:

MVN[ µ, σ ] =
1

2 π √Var(µ) Var(σ) √1 - 
Cov2( µ, σ )

Var( µ ) Var( σ )

  • exp [-  
χ2 0.05

2 ]

Eqn 10

In Eqn 10, χ2 0.05 refers to the ChiSquared distribution with two degrees of freedom (df

= 2). Similarly, the 90-percent and 50-percent joint confidence regions follow similar

ellipses with χ2 0.10 and χ2 0.50, respectively, substituted into Eqn 10 (each with df = 2).

Applying these methods to the original and the perturbed versions of DS1, we find that
µ̂  and σ̂  are each well approximated by Normal distributions with vanishing correlation.

Data Set 1

Original

Data Set 1

Perturbed
µ̂ N(2.014, 0.229) N(2.072, 0.267)

σ̂ N(0.997, 0.162) N(1.163, 0.189)

Corr[ µ̂ , σ̂ ] 0 0

and with the constraint σ̂  > 0. Thus, we have now fit this second-order random variable

to the data:

ln[ X ] ~ Normal[ µ, σ ] Eqn 11

which is equivalent to:

X ~ exp[ Normal[ µ, σ ] ] Eqn 11'
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The dashed lines Figures 1.2-O and -P show the 95-, 90- and 50-percent joint

confidence regions as the largest, intermediate, smallest ellipses, respectively. In these

figures, as expected, the joint confidence regions developed from the Taylor series

approximation to the loglikelihood function (the ellipses shown with dashed lines) are

similar to the joint confidence regions developed directly from the loglikelihood function

(the ovals shown with solid lines). As the number of data points increases, the ellipses

(dashed lines) and the ovals (solid lines) will converge.

Finally, in Figures 1.3-O and -P, the lines show the 95-percent confidence bands on the

probability plot using the isopleths developed in Burmaster & Wilson (1996). [EndNote

2].

Discussion: As expected, the 19 data points in DS1o pass the Wilk-Shapiro test for

Normality, are well fit on the probability plot in Figure 1.1-O, have small joint confidence

regions (ellipses and ovals) in Figure 1.2-O, and all fall within the 95-percent confidence
band in Figure 1.3-O. As estimated by different methods, the estimates { µ̂ , σ̂  } are

close to { µ = 2, σ = 1 }, the values used to synthesize the 19 original data points. In

contrast, the 19 data points in DS1p do not pass the Wilk-Shapiro test for Normality,

have a good-sized outlier on the probability plot in Figure 1.1-P, have larger joint

confidence regions (ellipses and ovals) in Figure 1.2-P, and do not all fall within the 95-

percent confidence band in Figure 1.3-P. As estimated by different methods, the
estimates { µ̂ , σ̂  } differ from { µ = 2, σ = 1 } by about 4 percent and 20 percent,

respectively. Overall, the perturbation applied to the largest datum propagates into
larger relative changes in σ̂  and σ̂  and into smaller relative changes in µ̂  and µ̂ .

5.0 The Method Applied to Data Set 2 - Original and Perturbed

We know a priori that these synthetic data come from a Beta distribution. Combining the

first and second steps, we use empirical cumulative distributions (CDFs) to fit this Beta

distribution to the original and the perturbed versions of DS2:

X ~ Beta[ α, β ] Eqn 12

On the empirical CDF plots shown in Figures 2.1-O and -P, we could have estimated α̂
and β̂  by nonlinear regression.
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Working in linear space, the probability distribution for drawing a single random value

from the model in Eqn 12 is (Evans et al, 1993):

p[ X | α , β ] =
xα-1 (1 - x)β-1

BetaFn( α , β ) Eqn 13

where BetaFn( α , β ) = 
 ⌡

⌠

0

1
  u α-1 (1-u) β-1 du. The likelihood function for a single,

randomly drawn sample, xi, is:

p[ α, β | xi ] =
xiα-1 (1 - xi)β-1

BetaFn( α , β ) Eqn 14

In this framework, the loglikelihood function for N independent random samples is:

LogLikelihood = Σ [ ln [ p[ α, β | xi ] ] ]

J[ α, β ]

= Σ [ (α-1) ln[ xi ] + (β-1) ln[1 - xi] - ln[BetaFn( α, β ) ] Eqn 15

The values of α and β that maximize the loglikelihood function for the sample are called

the MLE estimates α̂ and β̂ ; each is a point value.

Data Set 2

Original

Data Set 2

Perturbed

α̂ 2.099 1.874

β̂ 5.479 4.686

max J 13.2 11.6

In this example, the loglikelihood function has a single maximum at { α̂, β̂  }. In Figures

2.2-O and -P, the dots near the center of the plot show the locations of { α̂, β̂  }.

Using the same standard methods, certain contours of the loglikelihood function define

the joint confidence region for { α, β }. For example, the 95-percent joint confidence

region is defined by this contour:
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J[ α, β ] = J[ α̂, β̂  ] - 
χ2 0.05

2 (with df = 2)

= J[ α̂, β̂  ] - 
5.991

2 Eqn 16

and the 90- and 50-percent joint confidence regions follow similar contours with

appropriate values of the ChiSquared distribution substituted in Eqn 16.

Under the same assumptions as the first example, α and β are distributed according to

a MultiVariate Normal distribution (MVN) with the variance-covariance matrix equal to

the inverse of the observed information matrix for the sample:

∑∑∑∑ =  



 

 Var[ α ]   Cov[ α  β ]

 Cov[ α β ]   Var[ β ]  Eqn 17

= Inverse - 
∂2J
∂α2 - 

∂2J
∂α∂β

- 
∂2J

∂β∂α - 
∂2J
∂β2 α̂, β̂ Eqn 18

With the Taylor series approximation to the loglikelihood function, the approximations to

the joint confidence regions are ellipses. For example, the ellipse that approximates the

95-percent joint confidence region for { α, β } is this contour of the MultiVariate Normal

distribution (MVN) with df = 2:

MVN[ α, β ] =
1

2 π √Var(α) Var(β) √1 - 
Cov2( α, β )

Var(α) Var(β)

     • exp [-  
χ2 0.05

2 ]

Eqn 19

Applying these methods to the original and the perturbed versions of DS2, we find that

α̂ and β̂  are each approximated by Normal distributions with large, positive correlation.

Data Set 2

Original

Data Set 2

Perturbed

α̂ N(2.099, 0.555) N(1.874, 0.493)

β̂ N(5.479, 1.559) N(4.686, 1.333)
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Corr( α̂, β̂) 0.850 0.832

and with the two constraints α̂ >1 and β̂  > 1. Note that Corr( α̂, β̂) is the correlation

between α̂ and β̂  . The results here correspond to this second-order random variable:

X ~ Beta[ α, β ] Eqn 20

The dashed lines Figures 2.2-O and -P show the 95-, 90- and 50-percent joint

confidence regions as the largest, intermediate, smallest ellipses, respectively. In these

figures, as expected, the joint confidence regions developed from the Taylor series

approximation to the loglikelihood function (the ellipses shown with dashed lines) are

similar to the joint confidence regions developed directly from the loglikelihood function

(the ovals shown in solid lines). As the number of data points increases, the ellipses and

the ovals will again converge.

Finally, in Figures 2.3-O and -P, we approximate the 95-percent confidence bands on

the empirical CDFs by plotting four Beta distributions in each with parameters chosen

from the ends of the major and minor axes of the corresponding 95-percent ellipses.

Discussion: As expected, the 19 data points in DS2o are reasonably fit on the empirical

CDF plot in Figure 2.1-O, but they have relatively large joint confidence regions (ellipses

and ovals) in Figure 2.2-O. As estimated by different methods, the estimates { α̂ , β̂  }

are reasonably close to { α = 2, β = 6 }, the values used to synthesize the 19 original

data points. In contrast, the 19 data points in DS1p have a better fit on the empirical

CDF in Figure 2.1-P, have smaller joint confidence regions (ellipses and ovals) in Figure

2.2-P, and also fall within the 95-percent confidence band in Figure 2.3-P. In this

example, the perturbation applied to the largest datum propagates into a smaller joint

confidence region for α̂ and β̂  .

6.0 The Method Applied to Data Set 3 - Original and Perturbed

We do not know a priori that these measured data come from a parametric distribution.

Letting BW denote the distribution of body weight, we follow the lead of Brainard and

Burmaster (1992) by using LogNormal probability plots (Burmaster & Hull, 1996;

D'Agostino & Stephens, 1986) to see if a LogNormal distribution can model the original

and the perturbed versions of DS3:
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ln[ BW ] ~ Normal[ µ, σ ] Eqn 21

Since the points plotted in Figures 3.1-O and -P fall in a pattern with positive curvature,

we immediately see that we may need to consider a more complex model, perhaps a

mixture model (Brainard & Burmaster, 1992), for these data. However, since the

curvature in each plot is small, we proceed to fit a single LogNormal distribution to the
data. As shown in Figures 3.1-O and -P, we estimate µ̂  and σ̂  in Eqn 21 by fitting a

straight line to the plot using ordinary least-squares regression:

Data Set 3

Original

Data Set 3

Perturbed

µ̂ 4.171 same

σ̂ 0.222 same

adjR2 0.967 same

Since we do have the individual measured data, we must use a cumulative distribution

function (CDF) to develop the loglikelihood function for these "binned" data (e.g.,

Tanner, 1996, p. 15). The CDF for the univariate Normal distribution is:

CDF(Normal(x | µ, σ)) =
1
2 [ 1 + Erf[ 

x - µ
σ √ 2 

 ] ] Eqn 22

where Erf[ • ] denotes the Error Function (Abramowitz & Stegun, 1964). 

Given that the probability for one of the measurements for body weight (BW in kg) in the

bin between {BWlo, plo} and {BWhi, phi} is:

[ CDF[ ln[ BWhi] | µ, σ] - CDF[ ln[ BWlo] | µ, σ ] ]

the probability for all of the measurements in the bin between {BWlo, plo} and {BWhi, phi}

is:

[ CDF[ ln[ BWhi] | µ, σ] - CDF[ ln[ BWlo] | µ, σ ] ] ^ ( N (phi - plo) )

 and the loglikelihood function for all of the measurements is:
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J[ µ, σ ]

= N • ∑ ( phi - plo ) • ln[ CDF[ µ, σ | ln[BWhi] ] - CDF[ µ, σ | ln[ BWlo] ] ]
Eqn 23

The MLE estimates µ̂  and σ̂  are:

Data Set 3

Original

Data Set 3

Perturbed
µ̂ 4.171 same

σ̂ 0.226 same

max J -7853. -3926.

and, by taking the inverse of the observed information matrix, the parameters for the

fitted second-order distributions are:

Data Set 3

Original

Data Set 3

Perturbed
µ̂ N(4.171, 0.0051) N(4.171, 0.0072)

σ̂ N(0.226, 0.0037) N(0.226, 0.0052)

Corr[ µ̂ , σ̂ ] 0 0

with the constraint σ̂  > 0. As expected, the marginal distributions are uncorrelated.

Discussion: Even though Figures 3.1-O and -P suggest the need for a mixture model

(see Figure 4 and related text in Brainard & Burmaster, 1992), we use MLE to fit

second-order random variables to the original and perturbed data. As N decreases from

1,958 to 979, the joint confidence regions (in Figures 3.2-O and -P) grow in size but the

95-percent confidence bands (in Figures 3.3-O and -P) widen but do not enclose all the

points in either plot (in Figures 3.3-O and -P).

At this point, we have two options to proceed. As a first option, we could acknowledge

that the second-order LogNormal distributions just fit to the data do not capture the

variability and the uncertainty in the data. We could then consider other parametric

distributions or mixture models (Brainard & Burmaster, 1992). As a second option, we

could use professional judgment to increase the amount of uncertainty in the second-
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order distribution. For example, when we increase the uncertainty in σ̂  to

Normal( 0.226, 0.0037 ), the 95-percent confidence bands in Figures 3.3-O and -P

spread to enclose all the data points in each figure.

7.0 Discussion and Conclusions

The MLE method has many strengths: First, it works with every type of parametric

distribution, including mixtures of parametric distributions. Second, it works with

censored and/or binned data, e.g., measurements reported as "nondetect" with a stated

detection limit. Third, it works with truncated distributions. Fourth, it produces joint

confidence regions with the proper correlations among the parameters being estimated.

Fifth, as the number of data points grows large, it converges asymptotically to Normal

theory and produces joint confidence regions as ellipses. Sixth, with one, two, or three

fitted parameters, it produces results that are easily visualized and used in "two-

dimensional" Monte Carlo simulations.

The MLE method also has some limitations: First, when using the MLE method, the

analyst must choose a family of (parametric) probability distributions. If the analyst

chooses an inappropriate family of distributions, the MLE method will lead to suboptimal

or erroneous results. If several families of distributions appear to fit the data reasonably

well, the analyst must discriminate carefully among them. Thus, the analyst must use

many lines of reasoning -- from computer visualizations to professional judgment --

when selecting the family of distributions. Second, the fitting procedures often require

more power than is typically built into commercial spreadsheet programs. Third, it can

be difficult to visualize the results if a distribution (or mixture of distributions) has more

than three parameters.

Finally, we recognize the need to explore other approaches to fitting second-order

random variables to data as well, especially: (i) methods based on Kolmogorov-Smirnov

techniques (Bickel & Doksum; 1977); (ii) methods based on the bootstrap technique

(Efron & Tibshirani, 1991 and 1993; Frey & Burmaster, 1997); and (iii) methods based

on Bayesian techniques (Box & Tiao, 1973; Gelman et al, 1995; O'Ruanaidh &

Fitzgerald, 1996; Sivia, 1996).
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EndNotes

1. With ξξξξ as a k × 1 vector, the MultiVariate Normal distribution has this probability
density function (Anderson, 1958; Rose & Smith, 1996):

ξξξξ ~ MVN[ µµµµ, ∑∑∑∑ ]

p[ ξξξξ ] =
1

|∑∑∑∑|1/2 (2 π)k/2 • exp[ - 12 • (ξξξξ - µµµµ)T ∑∑∑∑-1 (ξξξξ - µµµµ) ]

2. The isopleths for the confidence bands are (Burmaster & Wilson, 1996):

ln[X] [ zU | zV ] • µµ + zV • µσ + zU • √ (σµ)2 + (zV • σσ)2   

where ln[X] [ zU | zV ] denotes the point value at zU conditional on zV. In this
equation, the symbol "•" denotes "is approximately equal to." Thus, to
approximate the point value for the 67th percentile of uncertainty on the 95th
percentile of variability of the LogNormal distribution, first evaluate this equation
with zV = 1.645 and zU = 0.440 and then exponentiate the result.
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T1.synLN VU.Fit

Table 1
Data Set 1

Data Set 1 Data Set 1 Data Set 1 Data Set 1 
Original Perturbed Original Perturbed

index xi x'i ln(xi) ln(x'i)
••••• ••••• ••••• ••••• •••••

1 2 2 0.69 0.69
2 2 2 0.69 0.69
3 3 3 1.10 1.10
4 3 3 1.10 1.10
5 4 4 1.39 1.39
6 4 4 1.39 1.39
7 4 4 1.39 1.39
8 4 4 1.39 1.39
9 6 6 1.79 1.79

10 6 6 1.79 1.79
11 7 7 1.95 1.95
12 8 8 2.08 2.08
13 8 8 2.08 2.08
14 11 11 2.40 2.40
15 15 15 2.71 2.71
16 23 23 3.14 3.14
17 23 23 3.14 3.14
18 32 32 3.47 3.47
19 101 301 4.62 5.71

••••• ••••• ••••• ••••• •••••

AMean 14.00 24.53 2.01 2.07
AStdDev 22.66 67.47 1.02 1.19

exp[N[2,1]]
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T2.synB VU.Fit

Table 2
Data Set 2

Data Set 2 Data Set 2
Original Perturbed

index xi x'i
••••• ••••• •••••

1 0.04 0.04
2 0.06 0.06
3 0.09 0.09
4 0.10 0.10
5 0.12 0.12
6 0.14 0.14
7 0.15 0.15
8 0.18 0.18
9 0.20 0.20

10 0.21 0.21
11 0.22 0.22
12 0.26 0.26
13 0.29 0.29
14 0.30 0.30
15 0.31 0.31
16 0.32 0.32
17 0.32 0.32
18 0.33 0.33
19 0.38 0.38
20 0.40 0.40
21 0.41 0.41
22 0.42 0.42
23 0.52 0.52
24 0.57 0.57
25 0.61 0.75

••••• ••••• •••••

AMean 0.28 0.28
AStdDev 0.16 0.17

Beta[2,6]
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T3.BW.nhanes

Table 3
Data Set 3

Body Body
Percenti le Weight Percenti le Weight

(kg) (kg)
••••• ••••• ••••• •••••

0.01 43.6 0.51 63.1
0.03 46.0 0.53 63.9
0.05 47.5 0.55 64.6
0.07 48.8 0.57 65.2
0.09 49.7 0.59 65.9
0.11 50.5 0.61 66.7
0.13 51.1 0.63 67.5
0.15 52.1 0.65 69.0
0.17 52.9 0.67 69.9
0.19 53.4 0.69 70.6
0.21 54.1 0.71 71.7
0.23 54.6 0.73 72.9
0.25 55.2 0.75 74.6
0.27 55.7 0.77 75.6
0.29 56.1 0.79 76.6
0.31 56.6 0.81 77.8
0.33 57.5 0.83 79.4
0.35 57.9 0.85 81.1
0.37 58.5 0.87 84.2
0.39 58.9 0.89 87.9
0.41 59.6 0.91 90.6
0.43 59.9 0.93 96.4
0.45 60.7 0.95 101.7
0.47 61.4 0.97 106.7
0.49 62.5 0.99 120.3

No = 1,958
Np = 979
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